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ABSTRACT We propose a genetic prediction modeling approach for genome-wide association study (GWAS)
data that can include not only marginal gene effects but also gene-environment (GxE) interaction effects—
i.e., multiplicative effects of environmental factors with genes rather than merely additive effects of each.
The proposed approach is a straightforward extension of our previous multiple-regression-based method,
STMGP (smooth-threshold multivariate genetic prediction), with the new feature being that genome-wide test
statistics from a GxE interaction analysis are used to weight the corresponding variants. We develop a sim-
ple univariate regression approximation to the GxE interaction effect that allows a direct fit of the STMGP
framework without modification. The sparse nature of our model automatically removes irrelevant predic-
tors (including variants and GxE combinations), and the model is able to simultaneously incorporate multiple
environmental variables. Simulation studies to evaluate the proposed method in comparison with other mod-
eling approaches demonstrate its superior performance under the presence of GxE interaction effects. We
illustrate the usefulness of our prediction model through application to real GWAS data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI).
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INTRODUCTION1

Although discovery of genetic risk factors for disease is an im-2

portant goal of genome-wide association studies (GWAS), pre-3

dicting disease development or related traits is an important task4

for applying GWAS results in precision medicine. Many re-5

searchers have explored algorithms for accurate genetic predic-6

tion based on GWAS data with a large number of single nu-7

cleotide polymorphisms (SNPs) (Purcell et al. 2009; Evans et al.8

2009; Yang et al. 2011; Makowsky et al. 2013; de Los Campos et al.9
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2013; Chatterjee et al. 2013; Dudbridge 2013; Maier et al. 2015; 10

Moser et al. 2015; Vilhjálmsson et al. 2015; Privé et al. 2019), but 11

no model has been found that performs universally well with 12

all data, and performance is highly dependent on the data- 13

generating mechanism (Cherlin et al. 2018). Popular models 14

are linear in the variants (or SNPs), such as Purcell’s gene 15

score (Purcell et al. 2009) and genomic best linear unbiased pre- 16

diction (BLUP) (Yang et al. 2011). As an alternative, we de- 17

veloped a statistical method for genetic prediction modeling 18

called smooth-threshold multivariate genetic prediction (STMGP) 19

(Ueki and Tamiya 2016), and Takahashi et al. (2020) recently 20

demonstrated that the performance of STMGP was superior to 21

that of other genetic prediction methods for predicting status of 22

depression with actual GWAS data. STMGP is a sparse model- 23

ing method based on a multiple linear regression model such as 24

the lasso (Tibshirani 1996) or the elastic net (Zou and Hastie 2005), 25

and it is able to account for the ultrahigh dimensionality of the 26

p ≫ n situation by filtering variants based on the correspond- 27

ing marginal-effect p-values calculated from univariate regres- 28

sions arising from a genome-wide scan. Sparseness is achieved 29
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by ignoring irrelevant variants; the corresponding regression co-1

efficient estimates are set to zero as a result of shrinkage based on2

the strength of the marginal effect through the smooth-threshold3

estimating equations developed by Ueki (2009). STMGP also au-4

tomatically tunes the prediction model by a Cp-type model selec-5

tion criterion (as with the Akaike information criterion (Akaike6

1973)), where the tuning parameter corresponds to the cutoff or7

threshold value for the marginal p-values that determines which8

effects to filter. The proposed Cp-type criterion based on Stein’s9

unbiased risk estimation (SURE, Stein 1981; Ye 1998; Efron 2004)10

has a closed-form expression and is a computationally efficient11

alternative to cross-validation that is often used to choose a p-12

value cutoff in the genetic prediction context (Purcell et al. 2009;13

Warren et al. 2013).14

Recent advances in data platforms now make it possible15

to integrate feature variables other than variants, such as16

those associated with lifestyle, clinical variables, imaging, etc.17

The simplest integration is to enter everything as an additive18

term in a multiple linear regression model as implemented in19

Ueki and Tamiya (2016); Takahashi et al. (2020). While such an20

additive modeling approach is simple and straightforward, there21

may be cases where other approaches are more appropriate.22

One example is gene–environment (GxE) interaction, which has23

received attention recently as one potential candidate to unveil24

the missing heritability problem (Manolio et al. 2009; Maher25

2008; Manolio 2013). With GxE interaction, the model to be26

estimated is no longer simply additive; rather, it involves terms27

that are multiplicative in the covariates. Many investigations28

have aimed at discovering genetic factors that contribute to GxE29

interactions in disease risk (Kraft et al. 2007; Ober and Vercelli30

2011; Kraft and Aschard 2015; McAllister et al. 2017; Ritchie et al.31

2017; Kooperberg and LeBlanc 2008; Hamza et al. 2011; Sung et al.32

2014; Aschard et al. 2012; Khoury 2017; Kraft and Aschard33

2015; Sung et al. 2016; Gauderman et al. 2017; Moore et al. 2018;34

Osazuwa-Peters et al. 2020): the approach using GWAS data is35

sometimes called a genome-wide environment interaction study36

(GWEIS) (Meijsen et al. 2018; Ueki et al. 2019; Arnau-Soler et al.37

2019). The need for GxE interactions depends on the data and38

target traits, but as with variant discovery, it would be beneficial39

to have a model for genetic prediction also that can incorporate40

GxE interactions (Aschard 2016). However, currently the number41

of such studies is very limited, especially with respect to human42

disease prediction.43

To address this issue, we present a straightforward extension44

of our STMGP method to allow incorporation of GxE interac-45

tion effects for building a genetic prediction model using large-46

scale genome-wide SNP data in conjunction with environmental47

variables. The proposed method can incorporate multiple envi-48

ronmental variables. The STMGP method requires as input the49

marginal association p-values from univariate regression models50

for each individual variant. This requirement implies that GxE51

interaction can be fit directly in the STMGP framework if it is ex-52

pressed in a univariate regression model. The standard univariate53

GxE interaction model for variant j in n samples is54

yi = µi + ϵi = β0j + β1jEi + β2jGij + β3jEiGij + ϵi,

where i = 1, . . . , n. This model contains three terms: Ei, Gij,55

and EiGij. Here, yi is the response variable, µi is the conditional56

mean of yi, Ei is the environmental variable, Gij is the jth variant57

(j = 1, . . . , p), p is the number of all variants, ϵi is the error vari-58

able, and β0j, β1j, β2j, and β3j are the corresponding regression co-59

efficients. In general, removing either Ei or Gj will change the re-60

gression coefficient estimate of the GxE interaction term (see Ap- 61

pendix for additional discussion). In this sense, the three terms — 62

Ei, Gij, and EiGij — are considered one set, meaning that the GxE 63

interaction effects cannot be represented by a univariate model. 64

To overcome this issue, we propose a simple approximation by a 65

univariate regression model (the rationale is given in the “Materi- 66

als and Methods” section), 67

yi = β0j + β1j Ẽi + β3j ẼiGij + ϵi,

in which Ẽi is the centered value of Ei, i.e. Ẽi = Ei − Ē with Ē the 68

sample mean of E1, . . . , En. In words, β2jGij is simply removed 69

from the standard model and Ẽi is used instead of Ei. As a result 70

of this approximation, a one-to-one correspondence is made be- 71

tween the regression coefficient β3j and the single predictor vari- 72

able EiGij. Thus, the STMGP method can now incorporate the 73

GxE interaction directly. 74

MATERIALS AND METHODS 75

We use vector and matrix notation. Let y = (y1, . . . , yn)T , 76

µ = (µ1, . . . , µn)T , E = (E1, . . . , En)T , and Gj = (G1j, . . . , Gnj)
T

77

(j = 1, . . . , p). We first briefly explain the STMGP framework 78

(Ueki and Tamiya 2016), then we present our proposed approach. 79

STMGP framework 80

Consider the linear multiple regression model, y = µ + ϵ, where 81

µ = Xβ, ϵ = (ϵ1, . . . , ϵn)T is the error vector, X is an nxp- 82

dimensional design matrix, and β is the corresponding vector of 83

p regression coefficients. In application to GWAS data without 84

GxE interactions, we set X = (G1, . . . , Gp). Note that p is much 85

larger than n in typical GWAS data—i.e. p ≫ n. Sparse model- 86

ing in which some of the regression coefficients are set to zero 87

is often used in GWAS (Hoggart et al. 2008; Ayers and Cordell 88

2010; Abraham et al. 2013; Lello et al. 2018; Privé et al. 2019). If 89

disease-susceptibility SNPs show relatively large marginal sig- 90

nals, marginal association screening effectively reduces the di- 91

mensionality. The polygenic score, including the gene score 92

method (Purcell et al. 2009) and its multivariate generalization 93

(Warren et al. 2013), uses upper-ranked SNPs with marginal as- 94

sociation as predictors to build the prediction model. The former 95

uses independent SNPs after pruning on the basis of LD (linkage 96

disequilibrium), which means that LD is not modeled. 97

The STMGP method (Ueki and Tamiya 2016) is a variant of
the multivariate gene score method (Warren et al. 2013), which is
essentially the multiple regression model for the upper-ranked
SNPs, and it accounts for correlations among SNPs by not in-
cluding LD-based pruning. Let Tj(y, X) denote a test statistic for
marginal association that takes a nonnegative value. Examples of
Tj(y, X) include the squared Pearson’s correlation and the F statis-
tic. Let t > 0 be a cutoff value for Tj(y, X) defining inclusion of
SNPs. The cutoff value t corresponds to a quantile of the null dis-
tribution of Tj(y, X), as in hypothesis testing. The linear multiple
regression after marginal association screening uses Xj satisfying
Tj(y, X) > t in the model. Without loss of generality, assume that
a large value of Tj(y, X) indicates stronger marginal association.
Multiple regression after marginal association screening can be

2 | M. Ueki and G. Tamiya
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expressed by

µ̂ = Xβ̂,

β̂ =

 β̂A

β̂Ac

 =

 (XT
AXA)

−1XT
Ay

0

 ,

A = {j : Tj(y, X) > t}, (1)

where XA = (Xj)j∈A and Ac indicates the complement set of A.1

Note that the above procedure is similar to sure independence2

screening (Fan and Lv 2008), which uses predictor variables that3

are upper-ranked in marginal association analyses. The proce-4

dure (1) is feasible for p ≫ n data and is useful in building a5

predictive model. In view of the normal equations, it can be seen6

that β̂ in (1) satisfies, for j = 1, . . . , p,7

(1 − D̂j){XT
j (Xβ̂ − y)}+ D̂j β̂ j = 0, (2)

or, in vector form,8

(Ip − D̂){XT(Xβ̂ − y)}+ D̂β̂ = 0,

where D̂j = 1{Tj(y, X) ≤ t}, where 1{·} denotes the indicator9

function, D̂ = diag(D̂j : j), and Ip is the p-dimensional identity10

matrix. Obviously, for j ∈ Ac, D̂j = 1 and (2) reduces to β̂ j = 0,11

i.e. a sparse solution; for j ∈ A, D̂j = 0 and the above normal12

equations reduce to XT
A(XA β̂A − y) = 0 because β̂Ac = 0. These13

are the normal equations for an ordinary least squares regression14

with design matrix XA. The resulting prediction process forms15

µ̂(y) = XA β̂A = XA(XT
AXA)

−1XT
Ay, which is discontinuous in y16

due to the thresholding induced by D̂j.17

The main innovative idea in STMGP is to replace the discontin-18

uous thresholding D̂j in (2) with a smooth thresholding using the19

smooth-threshold estimating equations (STEE) proposed by Ueki20

(2009). Following Ueki (2009), D̂j = 1{Tj(y, X) ≤ t} is replaced21

by an adaptive lasso smooth-thresholding function22

Ďj = min[1, {t/Tj(y, X)}
1+γ

2 ], (3)

where γ > 0 is a tuning parameter. This smooth-thresholding23

function is chosen so as to be identical to the adaptive lasso es-24

timator under the simplest least squares regression of y = β + ϵ25

(Ueki 2009). If Tj(y, X) ≤ t (or j ∈ Ac), Ďj = 1, producing a zero-26

valued regression coefficient; if Tj(y, X) > t (or j ∈ A), Ďj < 127

producing a nonzero regression coefficient. Therefore, the condi-28

tion for a sparse solution with Ďj is the same as that with D̂j. Note29

that Ďj is monotonically decreasing in Tj(y, X), so regression coef-30

ficients having large Tj(y, X) are penalized to a lesser extent than31

those having small Tj(y, X).32

For a given screening cutoff value t > 0, which gives a SNP set
A = {j : Tj(y, X) > t}, the estimates of the p regression coeffi-
cients are

β̌ =

 β̌A

β̌Ac


=

 {(I|A| − ĎA)(XT
AXA + λI|A|) + τĎA}−1(I|A| − ĎA)XT

Ay

0

 ,

(4)

where |A| is the cardinality of A. The non-negative tuning pa-33

rameters γ and τ are set to 1 and n/
√

log n, respectively, fol-34

lowing previous studies (Ueki and Tamiya 2016; Takahashi et al.35

2020), and λ > 0 is a small constant to avoid singularity of 36

XT
AXA. The corresponding prediction of yi is then µ̌i(y) = XT

i β̌, 37

where Ďj is an adaptive lasso smooth-thresholding function de- 38

fined as Ďj = min[1, {t/Tj(y, X)}
1+γ

2 ]. Since Ďj = 1 if and only if 39

Tj(y, X) ≤ t, the screened set A with Ďj is the same as that with 40

D̂j = 1{Tj(y, X) ≤ t}. It can be seen that Ďj replaces the dis- 41

continuous screening process D̂j by a continuous function. As a 42

result, µ̌i(y) turns out to be continuous in y, enabling stable model 43

selection (Breiman 1996). 44

According to Ueki (2009); Ueki and Tamiya (2016), the regres- 45

sion coefficients for the screened set in (4) can equivalently be con- 46

sidered as the solution of the generalized ridge regression with 47

loss ||y − XAβA||2 + ∑j∈A β2
j Wj, in which Wj = λ + τĎj/(1 − 48

Ďj). The ridge weight for each predictor variable, Wj, repre- 49

sents the uncertainty of the marginal association screening. If 50

the marginal association is very weak, Ďj ≈ 1 and Wj is large, 51

and the corresponding regression coefficient is strongly shrunken 52

towards zero. If the marginal association is strong, Ďj ≈ 0 53

and Wj ≈ λ, and the corresponding regression coefficient is less 54

penalized. Continuity due to the smooth thresholding also al- 55

lows computation of a Cp-type model selection criterion using 56

SURE. The Cp-type criterion enables a computationally efficient 57

choice of optimal p-value cutoff from the perspective of model 58

selection. Details are provided in the Supplementary Material of 59

Ueki and Tamiya (2016). We now outline the STMGP algorithm 60

for X = (G1, . . . , Gp). 61

Outline of the STMGP algorithm 62

Step 1. Perform single-SNP association analysis for p SNPs with a 63

univariate model for each SNP. 64

Step 2. Retain SNPs whose single-SNP association p-value is less 65

than αmax. 66

Step 3. Fix γ = 1 and τ = n/
√

log n, and select an optimal α from 67

candidate values in [αmin, αmax] by minimizing the Cp-type 68

criterion: 69

C(α) =
n

∑
i=1

{yi − µ̌i(α)}2 + 2σ̂2GDF(α).

Step 4. Compute β̌ in (4) by using the selected α in Step 3. 70

Here, µ̌i(α) denotes the predicted value for the ith subject at 71

the p-value threshold α corresponding to the test statistic thresh- 72

old t; αmax is the maximum p-value in the search, which is set to 73

make the expected number of screened SNPs to be on the order 74

of n in practice; σ̂2 is an error variance estimate; and GDF(α) de- 75

notes the generalized degrees of freedom (Ye 1998; Efron 2004). 76

The univariate model for the jth variant Gj (j = 1, . . . , p) in Step 1 77

is 78

µ01 = 1nβ0j + Gjβ1j. (5)

Step 3 outputs estimates of regression coefficients, β̌0, β̌1, . . . , β̌p, 79

for the intercept and each variant, which allows computation of 80

the prediction model in an additive form. Some of the regression 81

coefficients β̌1, . . . , β̌p can be exactly zero (i.e. sparsity). The pre- 82

dicted value for a new individual who has variants (G⋆
j )j=1,...,p 83

can be calculated as β̌0 + ∑
p
j=1 G⋆

j β̌ j. The above method assumes 84

a linear regression model for a quantitative phenotype. For a bi- 85

nary phenotype, a logistic regression model is used. 86
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Incorporating GxE interactions with univariate regression ap-1

proximation2

In what follows, we describe our procedure to incorporate GxE3

interactions into the STMGP framework. Consider the standard4

GxE interaction model for the jth variant Gj and an environmental5

variable E,6

µ0123 = 1nβ0j + Eβ1j + Gjβ2j + (Gj ◦ E)β3j, (6)

where ◦ denotes the Hadamard product—i.e. the ith element of7

(Gj ◦ E) is given by GijEi. As seen in Steps 1 and 2 of the STMGP8

algorithm, because the STMGP framework requires input of mul-9

tiple predictors that pass a marginal association p-value threshold10

from each univariate regression model, the above GxE interaction11

model does not directly fit the STMGP framework due to there12

being two regression coefficients — β2j and β3j — that associate13

with Gj. For example, if β2j is highly significant but β3j is not,14

it is uncertain whether we may include only Gj, because β2j dif-15

fers from the regression coefficient of Gj in the univariate regres-16

sion model without interaction term (Gj ◦ E). In contrast, if β3j17

is highly significant but β2j is not, then it is unclear whether we18

need (Gj ◦ E) only, for the same reason. Furthermore, including19

both (Gj ◦ E) and Gj might reduce predictive power by increasing20

the number of predictors included: in other words, the curse of21

dimensionality.22

We propose a simple approximation to the above GxE inter-23

action model by using a univariate regression model to elimi-24

nate these complications. To this end, we assume independence25

between E and each Gj. Such assumption is sometimes made26

in the literature on GxE interaction (Chatterjee and Carroll 2005;27

Mukherjee and Chatterjee 2007), and it is reasonable for many real28

GWAS data as the majority of variants have small marginal effects29

on environmental factors. Our proposed method (the main result)30

is simply to use the following univariate regression model instead31

of (6):32

µ013 = 1nβ0j + Ẽβ1j + (Gj ◦ Ẽ)β3j, (7)

in which Ẽ is the centered E as defined previously. In the Ap-33

pendix we show that, under independence between Gj and E, the34

least squares estimate of the regression coefficient of (Gj ◦ E) in35

(6) is approximated by that of (Gj ◦ Ẽ) in (7). This implies a one-36

to-one correspondence between the effects of the regression coef-37

ficient of (Gj ◦ E) in (6) and that of the single predictor (Gj ◦ Ẽ).38

As a consequence, the STMGP framework can be directly applied39

by setting the following design matrix with 2p predictors:40

X = (G1, . . . , Gp, G1 ◦ Ẽ, . . . , Gp ◦ Ẽ).

If we have m environmental variables, E1, . . . , Em, we may set41

X = (G1, . . . , Gp, G1 ◦ Ẽ1, . . . , Gp ◦ Ẽ1, . . . , G1 ◦ Ẽm, . . . , Gp ◦ Ẽm),

which has (1 + m)p predictors. To implement this proposal, we42

simply include an additional procedure into Steps 1 and 2 above.43

The following is the modification to include m environmental44

variables.45

Steps 1 and 2 of STMGP algorithm modified to incorporate GxE in-46

teractions with m environmental variables E1, . . . , Em47

Step 1’: Perform single-SNP association analysis for each of the p48

SNPs with a univariate model for each variant, and perform49

SNPxẼk interaction analysis for each of the p SNPs and Ẽk50

with the model (7) (k = 1, . . . , m), where Ẽk = Ek − Ēk1n with51

Ēk the sample mean of Ek.52

Step 2’: Screen (retain) SNPs on the basis of single-SNP association p- 53

values, and screen SNP–environmental variable pairs on the 54

basis of SNPxẼk interaction p-values (k = 1, . . . , m) at αmax. 55

The above steps are easily performed with PLINK (Purcell et al. 56

2007; Chang et al. 2015), as follows. Prepare the centered en- 57

vironmental variable in a covariate file, say environment.cov. 58

Then, the PLINK command option is --linear --covar 59

environment.cov --interaction --parameters 1,2,3 60

--tests 1,3. It is also possible to include additional co- 61

variates. We have implemented the above algorithm in our 62

STMGP package. We have also implemented a prediction model 63

for binary traits with a logistic regression model based on the 64

method developed in Ueki and Tamiya (2016). 65

Simulation study 66

To examine the performance of the proposed method, we con- 67

ducted simulation studies based on real SNP-GWAS data analo- 68

gous to those of Takahashi et al. (2020). We used an ADNI-GWAS 69

dataset obtained from the publicly available ADNI database 70

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public- 71

private partnership led by Principal Investigator Michael W. 72

Weiner, MD. The goal of the ADNI has been to test whether serial 73

magnetic resonance imaging (MRI), positron emission tomogra- 74

phy (PET), other biological markers, and clinical and neuropsy- 75

chological assessments can be combined to measure the progres- 76

sion of mild cognitive impairment (MCI) and early Alzheimer’s 77

disease (AD). For up-to-date information, see www.adni-info.org. 78

The ADNI is an ongoing, longitudinal study with the pri- 79

mary purpose being to explore the association of genetic and 80

neuroimaging information with late-onset Alzheimer’s disease 81

(LOAD). The study investigators recruited subjects older than 65 82

years of age comprising about 400 subjects with mild cognitive 83

impairment (MCI), about 200 subjects with Alzheimer’s disease 84

(AD), and about 200 healthy controls. Each subject was followed 85

for at least 3 years. During the study period, the subjects were 86

assessed with magnetic resonance imaging (MRI) measures and 87

psychiatric evaluation to determine the diagnostic status at each 88

time point. 89

The ADNI-GWAS data were obtained from 818 DNA sam- 90

ples of ADNI1 participants by using the Illumina Human 610- 91

Quad genotyping array (Shen et al. 2014). The data initially in- 92

cluded 620,901 SNPs. We included the apolipoprotein E (APOE) 93

SNPs rs429358 and rs7412 in our analysis. We used data from 94

684 non-Hispanic Caucasian samples after we excluded one pair 95

showing cryptic relatedness (revealed by the PLINK pairwise π̂ 96

statistic being greater than 0.125) (Purcell et al. 2007), and we ex- 97

cluded subjects whose reported sex did not match the sex in- 98

ferred from X-chromosome SNPs. We then applied further qual- 99

ity control measures by excluding SNPs with missing genotype 100

rate > 0.1, Hardy–Weinberg equilibrium test p-value < 10−6, and 101

MAF < 5%; the total number of remaining SNPs was 528,984, 102

which is the value of p for this analysis. 103

For the 684 individuals, given that the above real genotype 104

data remain fixed, we artificially generated a quantitative trait, 105

which was used as a target variable to be predicted. We also sim- 106

ulated two environmental variables (sex, E1, and years of edu- 107

cation, E2) as follows. E1 was generated from a Bernoulli dis- 108

tribution with success probability 0.5. E2 was generated from a 109

standard normal distribution. Both variables were standardized 110

to have mean zero and variance 1 in the generated sample. First, 111

we denote by p0 the number of causal variants for the main ef- 112

fects of genes, GxE1 effects, and GxE2 effects; note that the p0 113
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variants of each type are not the same. The corresponding 3p01

regression coefficients, β∗j (j = 1, . . . , 3p0), were generated from2

pre-specified distributions. Specifically, the first p0 regression co-3

efficients were generated independently and identically from a4

normal, NEG2 (normal–exponential–gamma with shape parame-5

ter 2), or Laplace distribution with mean zero and variance h2
G; the6

second p0 regression coefficients were generated independently7

and identically from a normal, NEG2, or Laplace distribution with8

mean zero and variance h2
G×E1

; the remaining p0 regression co-9

efficients were generated independently and identically from a10

normal, NEG2, or Laplace distribution with mean zero and vari-11

ance h2
G×E2

. Next, we randomly selected 3p0 causal variants,12

G∗
1 , . . . , G∗

3p0
, from among the p SNPs, (G1, . . . , Gp). The first p013

variants (G∗
1 , . . . , G∗

p0
) had a nonzero gene main effect, the second14

p0 variants (G∗
1+p0

, . . . , G∗
2p0

) had a nonzero GxE interaction effect15

with E1, and the remaining p0 variants (G∗
1+2p0

, . . . , G∗
3p0

) had a16

nonzero GxE interaction effect with E2.17

Then, the conditional mean was set as

µtrue =
1

√
p0

p0

∑
j=1

G̃∗
j β∗j +

1
√

p0

2p0

∑
j=1+p0

˜(G∗
j ◦ E1)β∗j

+
1

√
p0

3p0

∑
j=1+2p0

˜(G∗
j ◦ E2)β∗j ,

in which G̃∗
j , ˜(G∗

j ◦ E1), and ˜(G∗
j ◦ E2) denote the corresponding18

terms standardized to have mean zero and variance one. Fi-19

nally, a quantitative trait was generated as y = µtrue + ϵ, where20

ϵ is an independently and identically distributed normal ran-21

dom variable with mean zero and variance 1 − h2
G − h2

G×E1
−22

h2
G×E2

. Note that E( 1√
p0

∑
p0
j=1 G̃∗

j β∗j ) = 1√
p0

∑
p0
j=1 G̃∗

j E(β∗j ) = 023

and Var( 1√
p0

∑
p0
j=1 G̃∗

j β∗j ) = 1
p0

∑
p0
j=1(G̃

∗
j )

2Var(β∗j ) = h2
G, and,24

similarly, 1√
p0

∑
2p0
j=1+p0

˜(G∗
j ◦ E1)β∗j and 1√

p0
∑

3p0
j=1+2p0

˜(G∗
j ◦ E2)β∗j25

have mean zero and variance h2
G×E1

and h2
G×E2

, respectively. Also26

note that the three terms in µtrue and ϵ are mutually indepen-27

dent. Thus, y has mean zero and variance 1, and the triplet28

h2 = (h2
G, h2

G×E1
, h2

G×E2
) is referred to as heritability throughout29

this paper. We considered a total of eight scenarios for h2. First,30

we considered (0.3, 0, 0), (0.6, 0, 0), (0, 0.3, 0), and (0, 0.6, 0), where31

the first and second are scenarios with gene effect without GxE in-32

teractions, and the third and fourth are scenarios with GxE inter-33

actions only for E1. Then we considered four additional scenarios:34

(0, 0.15, 0.15), (0, 0.3, 0.3), (0, 0, 0.3), (0, 0, 0.6), where the first and35

second are scenarios with GxE interactions both for E1 and E2,36

and the third and fourth are scenarios with GxE interactions only37

for E2.38

We used cross-validation to evaluate the prediction models.39

The data were randomly divided into two parts: 20% for train-40

ing data and the remaining 80% for test data. The training dataset41

was used to build prediction models, and then the prediction ac-42

curacy of each model was evaluated on the basis of how well the43

simulated quantitative traits in the test dataset were predicted by44

the trained model. We used the prediction correlation coefficient45

(PCC) to measure the prediction accuracy. The above procedure46

was repeated 100 times. We note that the 3p0 causal SNPs and47

true regression coefficients differed for each replicate.48

We also considered simulations for prediction of binary traits.49

A binary trait was generated by dichotomizing the quantitative50

trait on the basis of whether or not its value exceeded Φ−1(0.7),51

in which Φ−1 is the standard normal quantile function. With a bi- 52

nary trait, the prediction accuracy of each model was evaluated by 53

the area under the receiver operating characteristic curve (AUC). 54

Comparisons among prediction models We compared the pro- 55

posed extension of the STMGP method with other prediction 56

models. We included the usual STMGP without GxE interaction 57

as a competitor; specifically, the STMGP models compared were 58

the STMGP without environmental variables, STMGP with envi- 59

ronmental variable E1, STMGP with environmental variable E2, 60

and STMGP with both environmental variables E1 and E2. 61

We also compared the proposed STMGP extension with other
prediction models based on genomic BLUP. Specifically, we con-
sidered the following four genomic BLUP models,

µb = 1nβ0 + E1β1,1 + E2β2,1 +
p

∑
j=1

G̃jβ j,2, (8)

µbge1 = 1nβ0 + E1β1,1 + E2β2,1 +
p

∑
j=1

G̃jβ j,2 +
p

∑
j=1

(G̃j ◦ E1)β j,3,

(9)

µbge2 = 1nβ0 + E1β1,1 + E2β2,1 +
p

∑
j=1

G̃jβ j,2 +
p

∑
j=1

(G̃j ◦ E2)β j,3,

(10)

µbge12 = 1nβ0 + E1β1,1 + E2β2,1 +
p

∑
j=1

G̃jβ j,2 +
p

∑
j=1

(G̃j ◦ Ē12)β j,3,

(11)

where Ē12 = (E1 + E2)/2, β0 and β1 are fixed effects, and β j,2 62

and β j,3 are random effects that are independently distributed 63

as N(0, σ2
G) and N(0, σ2

G×E), respectively. Similar BLUP mod- 64

els have been considered in previous studies (Moore et al. 2018; 65

e Sousa et al. 2017). We constructed the prediction model by BLUP 66

implemented in the BGEE package for R (Granato et al. 2018) by 67

using the BGEE function with options ite=20000, burn=1000, and 68

thin=3. 69

Application to prediction of real traits 70

We applied the proposed extension of the STMGP to the predic- 71

tion of real traits. All variables were obtained from the ADNIMERGE 72

package for R. We considered four cognitive scores as target 73

traits for prediction: FAQ (Functional Assessment Questionnaire), 74

CDRSB (Clinical Dementia Rating Sum of Boxes), MMSE (Mini- 75

Mental State Examination), and ADAS11 (the 11-item ADAS-cog 76

[Alzheimer’s Disease Assessment Scale-Cognitive Subscale]). We 77

used SEX and EDU (years of education) as environmental vari- 78

ables. We also considered two additional covariates, AGE and 79

APOE4 genotype. The latter is a known risk allele for AD devel- 80

opment. As with the above simulations, we evaluated prediction 81

accuracy via cross-validation. 82

First, we randomly divided the 684 individuals into five 83

groups of roughly equal size. Then, one of the five groups was 84

selected as the test set and the remaining groups were used as 85

the training set. Consequently, by repeating this with each group 86

in turn acting as the test set, we had five different test/training 87

sample combinations (i.e. 5-fold cross-validation). For each of 88

the five combinations, we built a prediction model based on the 89

training set and predicted each trait value for the test set with the 90

constructed prediction model. 91

For each training set, we used 528,984 SNPs as predictors 92

as in the above simulation studies. The prediction models we 93
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compared were STMGP with SEX as the environmental variable,1

STMGP with EDU as the environmental variable, and STMGP2

with SEX and EDU both as environmental variables. BLUP-based3

prediction models are (8)–(11). Since the target traits are cogni-4

tive scores, we additionally studied regression models including5

APOE4 genotype interaction without other variants; specifically,6

we considered the following models without GWAS data:7

µl0 = 1nβ0 + SEXβ1,1 + EDUβ2,1, (12)

µl = 1nβ0 + SEXβ1,1 + EDUβ2,1 + AGEβ3,1 + APOE4β4,1,
(13)

µlge1 = 1nβ0 + SEXβ1,1 + EDUβ2,1 + AGEβ3,1 + APOE4β4,1

+ APOE4 ◦ SEXβ5,1, (14)

µlge2 = 1nβ0 + SEXβ1,1 + EDUβ2,1 + AGEβ3,1 + APOE4β4,1

+ APOE4 ◦ EDUβ5,1, (15)

µlge12 = 1nβ0 + SEXβ1,1 + EDUβ2,1 + AGEβ3,1 + APOE4β4,1

+ APOE4 ◦ SEXβ5,1 + APOE4 ◦ EDUβ6,1. (16)

Prediction accuracy was evaluated with PCC, which compares the8

predicted value with the actual trait in the test set.9

RESULTS10

Simulation results11

Results of the quantitative trait simulation are shown in Figures 1,12

2, and Supplementary Figure S1, where each cell exhibits mean13

PCC and the number of causal variants is p0 = 100, 1000, and14

500, respectively.15

The first and second scenarios for h2, (0.3, 0, 0) and (0.6, 0, 0),16

are those with gene effects but no GxE interactions. From Fig-17

ures 1 and 2, and Supplementary Figure S1, all methods showed18

a higher predictive power in the latter scenario than in the former19

scenario due to the larger heritability. The four STMGP meth-20

ods resulted in comparable predictive power, implying that the21

inclusion of GxE interactions had virtually no effect on predic-22

tive power, which is a reasonable result because no GxE inter-23

action effects were assumed in the data-generating model. The24

BLUP models had lower predictive power than the STMGP meth-25

ods, which is also reasonable because only a small proportion26

of variants was assumed to be causal and the BLUP models do27

not carry out variable selection. Indeed, by comparing Figures 128

and 2 and Supplementary Figure S1, it can be seen that an in-29

crease in the number of causal variants made the difference be-30

tween the STMGP and BLUP methods smaller. The difference in31

effect size distribution had a non-negligible impact on predictive32

power. While the BLUP methods assume a normal distribution,33

the STMGP methods do not rely on the effect size distribution,34

and the STMGP methods had much higher predictive power than35

the BLUP methods, in particular, when the effect size distribu-36

tion was non-normal. The difference between the STMGP and37

BLUP methods was pronounced under the NEG2 distribution,38

which has the heaviest tails among the three effect-size distribu-39

tions compared. A similar result was observed in the simulation40

studies of Takahashi et al. (2020).41

The third and fourth scenarios for h2, (0, 0.3, 0) and (0, 0.6, 0),42

are those with GxE interactions only for E1. As in the scenarios for43

h2 = (0.3, 0, 0) and (0.6, 0, 0), all prediction models gave higher44

predictive power in the latter scenario than in the former scenario.45

Unlike the scenarios with no GxE interactions h2 = (0.3, 0, 0) and46

(0.6, 0, 0), the STMGP methods incorporating GxE interaction ef- 47

fects had higher predictive power than the STMGP method with- 48

out GxE interactions. For example, in scenario h2 = (0, 0.6, 0) 49

under a normal effect-size distribution, the STMGP without GxE 50

interaction produced mean PCC 0.36 (standard deviation 0.26), 51

while the STMGP with GxE interaction on variable E1 resulted in 52

mean PCC 0.41 (standard deviation 0.22). On the other hand, the 53

STMGP with GxE interaction on variable E2 resulted in mean PCC 54

0.37 (standard deviation 0.26), which is comparable with STMGP 55

without GxE interaction. This is reasonable since no GxE inter- 56

action effect on variable E2 was assumed. The STMGP with GxE 57

interaction on both E1 and E2 gave mean PCC 0.41 (standard de- 58

viation 0.23), a predictive power comparable to that of STMGP 59

with GxE interaction on variable E1. Total heritability and the 60

difference in effect size distribution had a similar impact on pre- 61

dictive power in scenarios (0.3, 0, 0) and (0.6, 0, 0). For p0 = 100 62

and the larger heritability scenario, h2 = (0, 0.6, 0), or under the 63

NEG2 distribution, STMGP with GxE interaction on variable E1 64

tended to produce higher predictive power than the BLUP meth- 65

ods, which is perhaps due to the fact that only a small proportion 66

of variants was assumed to be causal. In the other cases among 67

the third and fourth scenarios (any distribution with other than 68

(0, 0.6, 0) and p0 = 100, or p0 = 100 and NEG2 with any heritabil- 69

ity [(0, 0.3, 0) or (0, 0.6, 0)]), the STMGP methods did not always 70

perform better than the BLUP methods. 71

Results of the additional four scenarios are shown in Supple- 72

mentary Figures S3, S4, and S5. The first and second scenarios 73

for h2, (0, 0.15, 0.15) and (0, 0.3, 0.3), are the scenarios with GxE 74

interactions both for E1 and E2. Unlike the scenarios (0, 0.3, 0) 75

and (0, 0.6, 0), all three STMGP methods with GxE interaction had 76

comparably higher predictive power than STGMP without GxE 77

interaction. This is reasonable as GxE interaction was assumed for 78

both variables, E1 and E2. The third and fourth scenarios for h2, 79

(0, 0, 0.3) and (0, 0, 0.6), are those with GxE interactions only for 80

E2. The results were similar to those for (0, 0.3, 0) and (0, 0.6, 0), 81

in which the role of E2 was replaced by E1. 82

Results of the binary trait simulation are shown in Figures 3 83

and 4, and Supplementary Figure S2, in which each cell exhibits 84

the mean AUC. The results were consistent overall with the re- 85

sults of the quantitative trait simulation, but differences in predic- 86

tive power between methods were smaller than with the quanti- 87

tative trait simulation. 88

Prediction of real quantitative trait 89

Results of predicting the four cognitive scores — FAQ, CDRSB, 90

MMSE, and ADAS11 — as target traits are shown in Table 1, 91

which convey the five PCCs from 5-fold cross-validation. Gen- 92

erally, the prediction accuracy differed across the four traits. By 93

comparing l0 with l, lge1, lge2, and lge12, which correspond to 94

formulae (12)–(16), we see that inclusion of the APOE4 geno- 95

type (without genome-wide variants) gave much higher predic- 96

tive power. However, the observed comparable prediction ability 97

among models l, lge1, lge2, and lge12 implies that the inclusion 98

of an interaction between APOE4 and either SEX or EDU did not 99

impact predictive power. The BLUP methods, s, sge1, sge2, and 100

sge12, resulted in performance that was comparable to those of l, 101

lge1, lge2, and lge12, and did not show any extremely distinctive 102

behavior. Similarly, the STMGP methods did not behave much 103

differently from the other methods, but STMGP with a GxE inter- 104

action with EDU (sge2) tended to show slightly higher predictive 105

power and improved upon the STMGP without GxE interaction. 106

In particular, for prediction of FAQ, STMGP with a GxE interac- 107
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Figure 1 Quantitative trait simulation with p0 = 100. Average predic-
tive correlation coefficient (PCC) for eight models. For each scenario
(shown in rows), high values are highlighted in red and low values
in white. s: STMGP with E1 and E2 as covariates; sge1: STMGP
with E1 and E2 as covariates and E1 as environmental variable for
GxE interaction; sge2: STMGP with E1 and E2 as covariates and
E2 as environmental variable for GxE interaction; sge12: STMGP
with E1 and E2 as covariates, and E1 and E2 as environmental vari-
ables for GxE interaction; bg: BLUP with E1 and E2 as covariates;
bge1: BLUP with E1 and E2 as covariates and E1 as environmental
variable for GxE interaction; bge2: BLUP with E1 and E2 as covari-
ates and E2 as environmental variable for GxE interaction; bge12:
BLUP with E1 and E2 as covariates, and average of E1 and E2 as
environmental variable for GxE interaction. Scenarios are denoted
as (h2

G, h2
G×E1

, h2
G×E2

)_dist, where dist means effect size distri-
bution: Normal, NEG2, or Laplace.
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Figure 2 Quantitative trait simulation with p0 = 1000. Average pre-
dictive correlation coefficient (PCC) for eight models. See Figure 1
for explanation of scenarios (shown in rows).
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Figure 3 Binary trait simulation with p0 = 100. Average area un-
der the ROC curve (AUC) is shown for eight models. For each sce-
nario (in rows), high values are highlighted in red and low values in
white. s: STMGP with E1 and E2 as covariates; sge1: STMGP with
E1 and E2 as covariates and E1 as environmental variable for GxE
interaction; sge2: STMGP with E1 and E2 as covariates and E2 as
environmental variable for GxE interaction; sge12: STMGP with E1
and E2 as covariates, and E1 and E2 as environmental variables
for GxE interaction; bg: BLUP with E1 and E2 as covariates; bge1:
BLUP with E1 and E2 as covariates and E1 as environmental vari-
able for GxE interaction; bge2: BLUP with E1 and E2 as covariates
and E2 as environmental variable for GxE interaction; bge12: BLUP
with E1 and E2 as covariates, and average of E1 and E2 as envi-
ronmental variable for GxE interaction. Scenarios are denoted as
(h2

G, h2
G×E1

, h2
G×E2

)_dist, where dist means effect size distribu-
tion: Normal, NEG2, or Laplace.
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(0.3,0,0)_Laplace

(0.3,0,0)_NEG2

(0.3,0,0)_Normal

(0.6,0,0)_Laplace
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s sge1 sge2 sge12 bg bge1 bge2 bge12

Figure 4 Binary trait simulation with p0 = 1000. Average area under
the ROC curve (AUC) for eight models. See Figure 3 for explanation
of scenarios (shown in rows).
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tion with EDU (sge2) gave the highest mean PCC (0.22; standard1

deviation 0.07) among the methods. However, the differences2

among models were small: for example, the second best mean3

PCC was 0.21 for l, lge1, lge2, bg, bge1, bge2, and the mean PCC4

for the STMGP without GxE interaction was is 0.20 with standard5

deviation 0.08. On the other hand, the STMGPs with GxE interac-6

tion with SEX (sge1) or with both SEX and EDU (sge12) produced7

lower or more variable prediction results.8

The above results indicate the possibility that incorporating9

GxE interactions leads to improved predictive performance. Of10

course, whether the predictive performance is improved or not11

depends on the choice of environmental variable, which was also12

observed in the simulation studies.13

Finally, we checked the validity of the proposed univariate re-14

gression approximation in the real data application. Supplemen-15

tary Figures S9–S16 show the accuracy of the proposed approxi-16

mation, where each figure gives a scatter plot matrix of p-values17

associated with the GxE interaction term Gj ◦ E from models (6)18

and (7) with environmental variables either centered or not. Since19

centering of environmental variable E does not change the model20

(6), we only compared three p-values: model (6), model (7) with21

centered E, and model (7) with non-centered E. Among the fig-22

ures, Supplementary Figures S9, S11, S13, and S15 show the p-23

values associated with GxE interaction for SEX as the environ-24

mental variable, and Supplementary Figures S10, S12, S14, and25

S16 show the p-values associated with GxE interaction for EDU as26

the environmental variable. In all figures, the − log10 p-values for27

the GxE interaction term in the approximate univariate regression28

(i.e. with no gene main effect) using a centered environmental29

variable were highly correlated (> 0.99) with the − log10 p-values30

for the GxE interaction term in the interaction model having a31

gene main effect. On the other hand, with a non-centered envi-32

ronmental variable the same sets of − log10 p-values for the GxE33

interaction terms were either less correlated (correlation around34

0.65 for SEX as E) or uncorrelated (< 0.02 for EDU). These re-35

sults confirm the validity of the proposed univariate regression36

approximation.37

DISCUSSION38

In this paper, we presented a procedure to incorporate GxE in-39

teraction effects into our previously developed genetic modeling40

approach, the STMGP method. Since the STMGP method relies41

on univariate regression to screen for high-dimensional predic-42

tors, we developed a univariate regression approximation to the43

GxE interaction model so that the STMGP framework can be di-44

rectly applied without modification. The approximation is simply45

to use “centered” environmental variables and remove gene main46

effect terms from the standard GxE interaction regression model.47

Simulation studies and real data analysis showed that incorporat-48

ing GxE interactions may improve the performance of the STMGP,49

but, as expected, its effectiveness depends to a great extent on the50

underlying genetic structure.51

An important point to note is that genome-wide GxE inter-52

action analysis is more sensitive to model misspecification than53

marginal association analysis, as pointed out by Voorman et al.54

(2011); Almli et al. (2014); Ueki et al. (2019). Since the model mis-55

specification issue applies to all GxE interaction analyses, special56

care should be taken in modeling GxE interaction, such as se-57

lection of the environmental variable. We recommend using the58

check statistic proposed by Ueki et al. (2019) before performing a59

GxE interaction analysis; this enables prediction of problematic60

behavior in the GxE interaction analysis without having to per-61

form the actual genome-wide scan. 62

Most of the existing genetic prediction models treat genetic 63

data separately from non-genetic data. While the widely used ad- 64

ditive models to combine genetic and non-genetic data are simple 65

and easy to handle, there must be situations where non-additive 66

models, such as models with GxE interactions, improve upon the 67

additive models. However, studies have reported low power of 68

GxE interaction analysis (Kraft et al. 2007). Nevertheless, analo- 69

gous to the relationship between an association study and pre- 70

diction modeling, the goal is not to discover GxE interactions but 71

to have a better prediction model. Low statistical power is not 72

necessarily a severe issue in this context: GxE interactions, even if 73

not genome-wide significant, may be useful in helping to improve 74

predictive power. 75
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n Table 1 Results of predicting four quantitative traits, FAQ, CDRSB, MMSE, and ADAS11

Traita Datab l0c ld lge1e lge2f lge12g sh sge1i sge2j sge12k bgl bge1m bge2n bge12o

FAQ CV 1 0.07 0.16 0.15 0.17 0.16 0.11 −0.01 0.15 0.05 0.14 0.13 0.13 0.12

CV 2 0.17 0.35 0.33 0.36 0.34 0.26 0.24 0.32 0.31 0.32 0.35 0.33 0.33

CV 3 0.19 0.15 0.15 0.16 0.16 0.19 0.13 0.21 0.15 0.17 0.15 0.18 0.17

CV 4 0.01 0.26 0.26 0.27 0.27 0.31 0.18 0.24 0.19 0.23 0.28 0.25 0.23

CV 5 0.08 0.16 0.16 0.10 0.09 0.15 0.14 0.17 0.15 0.17 0.14 0.17 0.15

mean 0.10 0.21 0.21 0.21 0.20 0.20 0.14 0.22 0.17 0.21 0.21 0.21 0.20

sd 0.08 0.09 0.08 0.10 0.10 0.08 0.09 0.07 0.09 0.07 0.10 0.08 0.09

CDRSB CV 1 0.07 0.13 0.13 0.12 0.12 0.21 0.18 0.22 0.17 0.12 0.13 0.10 0.11

CV 2 0.16 0.38 0.37 0.36 0.35 0.33 0.28 0.33 0.30 0.34 0.36 0.34 0.33

CV 3 0.22 0.26 0.26 0.26 0.26 0.28 0.26 0.26 0.25 0.25 0.25 0.26 0.27

CV 4 0.10 0.37 0.37 0.37 0.37 0.44 0.36 0.41 0.31 0.36 0.39 0.37 0.36

CV 5 0.19 0.27 0.26 0.25 0.22 0.27 0.25 0.28 0.27 0.27 0.25 0.27 0.27

mean 0.15 0.28 0.27 0.27 0.26 0.31 0.27 0.30 0.26 0.27 0.27 0.27 0.27

sd 0.06 0.10 0.10 0.10 0.10 0.08 0.06 0.07 0.06 0.09 0.10 0.10 0.10

MMSE CV 1 0.10 0.27 0.25 0.26 0.25 0.13 0.21 0.18 0.16 0.22 0.23 0.23 0.22

CV 2 0.19 0.34 0.33 0.33 0.32 0.30 0.33 0.33 0.33 0.29 0.30 0.31 0.30

CV 3 0.30 0.35 0.35 0.35 0.35 0.28 0.26 0.34 0.35 0.37 0.38 0.36 0.36

CV 4 0.27 0.35 0.35 0.35 0.36 0.35 0.34 0.39 0.37 0.36 0.37 0.36 0.37

CV 5 0.17 0.28 0.26 0.28 0.25 0.25 0.23 0.26 0.22 0.29 0.28 0.29 0.27

mean 0.21 0.32 0.31 0.31 0.31 0.26 0.27 0.30 0.29 0.31 0.31 0.31 0.30

sd 0.08 0.04 0.05 0.04 0.05 0.08 0.06 0.08 0.09 0.06 0.06 0.05 0.06

ADAS11 CV 1 0.12 0.31 0.32 0.30 0.31 0.30 0.28 0.29 0.26 0.29 0.29 0.28 0.27

CV 2 0.17 0.30 0.30 0.30 0.30 0.22 0.23 0.24 0.22 0.28 0.27 0.28 0.29

CV 3 0.15 0.29 0.30 0.29 0.30 0.22 0.26 0.24 0.26 0.29 0.29 0.29 0.29

CV 4 0.11 0.36 0.36 0.35 0.35 0.29 0.29 0.37 0.29 0.37 0.38 0.35 0.36

CV 5 0.22 0.34 0.32 0.33 0.32 0.30 0.28 0.34 0.24 0.33 0.31 0.32 0.31

mean 0.15 0.32 0.32 0.31 0.32 0.27 0.27 0.30 0.25 0.31 0.31 0.30 0.30

sd 0.04 0.03 0.03 0.03 0.02 0.04 0.02 0.06 0.03 0.04 0.04 0.03 0.03

a Prediction of each target trait is evaluated by the prediction correlation coefficient (PCC) from 5-fold cross-validation.
b Data used to calculate PCC (CV 1 – CV 5 denote each cross-validated dataset from 5-fold cross-validation) for each model are shown in row together with mean and standard deviation

(sd).
c Linear regression with SEX and EDU as predictors.
d Linear regression with SEX, EDU, AGE, and APOE4 as predictors.
e Linear regression with SEX, EDU, AGE, APOE4, and APOE4xSEX as predictors.
f Linear regression with SEX, EDU, AGE, APOE4, and APOE4xEDU as predictors.
g Linear regression with SEX, EDU, AGE, APOE4, APOE4xSEX, and APOE4xEDU as predictors.
h STMGP with SEX, EDU, AGE, and APOE4 as covariates.
i STMGP with SEX, EDU, AGE, and APOE4 as covariates, and SEX as environmental variable for GxE interaction.
j STMGP with SEX, EDU, AGE, and APOE4 as covariates, and EDU as environmental variable for GxE interaction.
k STMGP with SEX, EDU, AGE, and APOE4 as covariates, and AGE and EDU as environmental variables for GxE interaction.
l BLUP with SEX, EDU, AGE, and APOE4 as covariates.

m BLUP with SEX, EDU, AGE, and APOE4 as covariates, and SEX as environmental variable for GxE interaction.
n BLUP with SEX, EDU, AGE, and APOE4 as covariates, and EDU as environmental variable for GxE interaction.
o BLUP with SEX, EDU, AGE, and APOE4 as covariates, and average of AGE and EDU as environmental variable for GxE interaction.
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APPENDIX1

Derivation of the univariate regression approximation2

We consider the GxE interaction model yi = β0j + Eiβ1j +Gijβ2j +3

EiGijβ3j + ϵi, where the ϵi are independently and identically dis-4

tributed with mean zero and variance σ2
0 . Here, we assume that5

Gij and Ei are independent, and that each is independently and6

identically distributed for i = 1, . . . , n. We also assume that7

σ2
0 , vGj = Var(Gij), and vE = Var(Ei) are finite. Let PX =8

X(XT X)−1XT be the projection matrix onto the column space of9

X, and let QX = In − PX . Then, for n-dimensional one-vector 1n,10

the operator Q1n = In − P1n gives centering to have mean zero.11

Let Ẽ = Q1n E and G̃j = Q1n Gj. Then, for large n,12

n−1G̃T
j Ẽ = E(n−1G̃T

j Ẽ) + Op{Var(n−1G̃T
j Ẽ)1/2} = Op(n−1/2).

(17)
Finally, let Wj = E ◦ Gj and W̃j = Ẽ ◦ Gj.13

Note that PX = Pn−1/2X for any given matrix X. Thus, QX =14

Qn−1/2X also holds. By Ueki and Kawasaki (2013); Ueki et al.15

(2019), the least squares estimate of regression coefficient β3j in16

the model µ = µ(E, Gj) = 1nβ0j + Eβ1j + Gjβ2j + (Gj ◦ E)β3j,17

model (6), is18

β̂0123
3j (E, Gj) =

yTQ(1n ,E,Gj)Wj

||Q(1n ,E,Gj)Wj||2
=

n−1yTQ(1n ,E,Gj)Wj

n−1||Q(1n ,E,Gj)Wj||2
. (18)

Similarly, the least squares estimate of regression coefficient β3j in19

the model µ = µ(E, Gj) = 1nβ0j + Eβ1j + Gjβ2j + (Gj ◦ E)β3j is20

β̂013
3j (E, Gj) =

yTQ(1n ,E)Wj

||Q(1n ,E)Wj||2
=

n−1yTQ(1n ,E)Wj

n−1||Q(1n ,E)Wj||2
. (19)

We utilize the decomposition of a projection matrix or block-21

wise formula (Takane and Yanai 1999, Lemma 3 (iii)), P(A,B) =22

PA + PQA B for two matrixes A and B. Note that PAPQA B =23

PQA BPA = O since QA A = O. Then, P(1n ,E) = P1n + PẼ. Using24

this, and by the blockwise formula again, we have P(1n ,E,Gj) =25

P1n + P(Ẽ,G̃j)
= P1n + PẼ + PQẼG̃j

= P(1n ,E) + PQẼG̃j
. Thus,26

Q(1n ,E,Gj) = Q(1n ,E) − PQẼG̃j
,

and applying this identity to (18),

β̂0123
3j (E, Gj) =

n−1yTQ(1n ,E,Gj)Wj

n−1WT
j Q(1n ,E,Gj)Wj

=
n−1yT{Q(1n ,E) − PQẼG̃j

}Wj

n−1WT
j {Q(1n ,E) − PQẼG̃j

}Wj

=
n−1yTQ(1n ,E)Wj − n−1yT PQẼG̃j

Wj

n−1||Q(1n ,E)Wj||2 − n−1WT
j PQẼG̃j

Wj
, (20)

which differs from (19) unless n−1WT
j PQẼG̃j

Wj and

n−1WT
j PQẼG̃j

Wj are both negligible. Let Gj = QẼG̃j. The
second term of the numerator of (20) can be written as

n−1yT PGj
Wj = n−1yTGj(G

T
j Gj)

−1GT
j Wj

= (n−1yTGj)(n−1GT
j Gj)

−1(n−1WT
j Gj).

To begin with, by (17) the left, middle, and right terms reduce
to

n−1yTGj = n−1yTQn−1/2 ẼG̃j = n−1yTG̃j −
(n−1yT Ẽ)(n−1G̃T

j Ẽ)

||n−1/2Ẽ||2

= n−1yTG̃j + op(1), (21)

n−1GT
j Gj = n−1G̃T

j Qn−1/2 ẼG̃j = n−1G̃T
j G̃j −

(n−1G̃T
j Ẽ)2

||n−1/2Ẽ||2

= n−1G̃T
j G̃j + op(1), (22)

n−1WT
j Gj = n−1WT

j Qn−1/2 ẼG̃j = n−1WT
j G̃j −

(n−1WT
j Ẽ)(n−1G̃T

j Ẽ)

||n−1/2Ẽ||2

= n−1WT
j G̃j + op(1), (23)

respectively. Combining (21)–(23), the numerator of (20) reduces
to

n−1yTQ(1n ,E)Wj − n−1yT PQẼG̃j
Wj

= n−1yTQ(1n ,E)Wj −
(n−1yTG̃j)(n−1WT

j G̃j)

n−1G̃T
j G̃j

+ op(1). (24)

By analogous calculations, the denominator of (20) reduces to

n−1||Q(1n ,E)Wj||2 − n−1WT
j PQẼG̃j

Wj (25)

= n−1||Q(1n ,E)Wj||2 −
(n−1WT

j G̃j)
2

n−1G̃T
j G̃j

+ op(1). (26)

Substituting (24) and (26) into (20),

β̂0123
3j (E, Gj) =

n−1yTQ(1n ,E)Wj −
(n−1yT G̃j)(n−1WT

j G̃j)

n−1G̃T
j G̃j

n−1||Q(1n ,E)Wj||2 −
(n−1WT

j G̃j)2

n−1G̃T
j G̃j

+ op(1).

(27)

This approximates (19) if (n−1yTG̃j)(n−1WT
j G̃j) and (n−1WT

j G̃j)
2

27

are both negligible, which, however, might not be true in general. 28

Instead, we consider the case where E is replaced by Ẽ = 29

Q1n E = E − Ē1n in (18). In this case, the estimate of regression 30

coefficient (19) is 31

β̂013
3j (Ẽ, Gj) =

yTQ(1n ,Ẽ)W̃j

||Q(1n ,Ẽ)W̃j||2
=

n−1yTQ(1n ,Ẽ)W̃j

n−1||Q(1n ,Ẽ)W̃j||2
, (28)

and the corresponding model is µ = µ(Ẽ, Gj) = 1nβ0j + Ẽβ1j +

Gjβ2j + (Gj ◦ Ẽ)β3j (i.e. model (7)). By an argument analogous to
that which leads to (27),

β̂0123
3j (Ẽ, Gj) =

yTQ(1n ,Ẽ,Gj)
W̃j

||Q(1n ,Ẽ,Gj)
W̃j||2

=
n−1yTQ(1n ,Ẽ,Gj)

W̃j

n−1||Q(1n ,Ẽ,Gj)
W̃j||2

=

n−1yTQ(1n ,Ẽ)W̃j −
(n−1yT G̃j)(n−1W̃T

j G̃j)

n−1G̃T
j G̃j

n−1||Q(1n ,Ẽ)W̃j||2 −
(n−1W̃T

j G̃j)2

n−1G̃T
j G̃j

+ op(1).

(29)
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Here we focus on the quantity

n−1W̃T
j G̃j = n−1

n

∑
i=1

ẼiGijG̃ij

= E

(
n−1

n

∑
i=1

ẼiGijG̃ij

)
+ Op

Var

(
n−1

n

∑
i=1

ẼiGijG̃ij

)1/2
 .

By the independence between E and Gj,1

E

(
n−1

n

∑
i=1

ẼiGijG̃ij

)
= n−1

n

∑
i=1

E(Ẽi)E(GijG̃ij) = 0,

where the last identity is due to the fact that E(Ẽi) = E(Ei − Ē) =2

0 for any i. As a consequence,3

n−1W̃T
j G̃j = Op(n−1/2),

and by substituting the above into (29),

β̂0123
3j (Ẽ, Gj) =

n−1yTQ(1n ,Ẽ)W̃j + (n−1yTG̃j)Op(n−1/2)

n−1||Q(1n ,Ẽ)W̃j||2
+ op(1).

(30)

This representation reveals that, if n−1yTQ(1n ,Ẽ)W̃j dominates4

(n−1yTG̃j)n−1/2, β̂0123
3j (Ẽ, Gj) (eq. (30)) is approximated by5

β̂013
3j (Ẽ, Gj) (eq. (28)). In other words, the approximation breaks6

down only if n−1/2(n−1yTG̃j) cannot be ignored in comparison to7

n−1yTQ(1n ,Ẽ)W̃j for large n, which is the case when the jth variant8

has a large marginal effect on y while the GxE interaction effect9

is weak or absent. Such variants should in principle be captured10

by the marginal association scan. The proposed algorithm thus11

implements the marginal association scan in addition to the GxE12

interaction scan, which avoids missing variants that have strong13

marginal effects. Supplementary Figures S9–S16 confirm that the14

approximation works well in practice with real data, in which15

we can see the importance of centering E (see “Prediction of real16

quantitative trait” section).17

Invariance of regression coefficient estimate for GxE interaction18

19

Here we show that the least squares estimate of regression coeffi-20

cient β3j in the model µ = µ(E, Gj) = 1nβ0j + Eβ1j +Gjβ2j +(Gj ◦21

E)β3j, model (6), is invariant if E is replaced by Ea = E − a1n22

and/or Gj is replaced by Gb
j = Gj − b1n for any scalar values a23

and b. Recall (18),24

β̂0123
3j (E, Gj) =

yTQ(1n ,E,Gj)Wj

||Q(1n ,E,Gj)Wj||2
,

where Wj = (E ◦ Gj). Therefore,25

β̂0123
3j (Ea, Gb

j ) =
yTQ(1n ,Ea ,Gb

j )
Wa,b

j

||Q(1n ,Ea ,Gb
j )

Wa,b
j ||2

, (31)

where Wa,b
j = (Ea ◦ Gb

j ) = (E − a1n) ◦ (Gj − b1n) = Wj −26

bE − aGj + ab1n. Note that Q(1n ,Ea ,Gb
j )

= In − P(1n ,Ea ,Gb
j )

= In −27

P(1n ,E−a1n ,Gj−b1n) = In − P(1n ,E,Gj) = Q(1n ,E,Gj), Hence,28

Q(1n ,Ea ,Gb
j )

Wa,b
j = Q(1n ,E,Gj)(Wj − bE− aGj + ab1n) = Q(1n ,E,Gj)Wj,

in which the second identity is due to the fact that bE, aGj, and 29

ab1n are included in the linear span by (1n, E, Gj). Therefore, by 30

(31), for any scalar values a and b, the following identity holds: 31

β̂0123
3j (Ea, Gb

j ) =
yTQ(1n ,E,Gj)Wj

||Q(1n ,E,Gj)Wj||2
= β̂0123

3j (E, Gj). (32)

It is noteworthy that the invariance is essentially due to the in- 32

volvement of both E and Gj, so it is not guaranteed to hold in the 33

absence of either of the two terms. 34
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